首页> 外文OA文献 >Enhancements of Multi-class Support Vector Machine Construction from Binary Learners using Generalization Performance
【2h】

Enhancements of Multi-class Support Vector Machine Construction from Binary Learners using Generalization Performance

机译:基于maTLaB的多类支持向量机构造的增强   使用泛化性能的二进制学习者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose several novel methods for enhancing the multi-class SVMs byapplying the generalization performance of binary classifiers as the core idea.This concept will be applied on the existing algorithms, i.e., the DecisionDirected Acyclic Graph (DDAG), the Adaptive Directed Acyclic Graphs (ADAG), andMax Wins. Although in the previous approaches there have been many attempts touse some information such as the margin size and the number of support vectorsas performance estimators for binary SVMs, they may not accurately reflect theactual performance of the binary SVMs. We show that the generalization abilityevaluated via a cross-validation mechanism is more suitable to directly extractthe actual performance of binary SVMs. Our methods are built around thisperformance measure, and each of them is crafted to overcome the weakness ofthe previous algorithm. The proposed methods include the Reordering AdaptiveDirected Acyclic Graph (RADAG), Strong Elimination of the classifiers (SE),Weak Elimination of the classifiers (WE), and Voting based Candidate Filtering(VCF). Experimental results demonstrate that our methods give significantlyhigher accuracy than all of the traditional ones. Especially, WE providessignificantly superior results compared to Max Wins which is recognized as thestate of the art algorithm in terms of both accuracy and classification speedwith two times faster in average.
机译:我们以二进制分类器的泛化性能为核心思想,提出了几种增强多类SVM的新颖方法,该概念将被应用到现有的算法中,即决策定向非循环图(DDAG),自适应定向非循环图( ADAG)和Max Wins。尽管在先前的方法中,已经进行了许多尝试来使用一些信息,例如裕量大小和支持向量的数量作为二进制SVM的性能估计器,但它们可能无法准确反映二进制SVM的实际性能。我们表明,通过交叉验证机制评估的泛化能力更适合直接提取二进制SVM的实际性能。我们的方法是围绕此性能指标构建的,并且每种方法都经过精心设计,可以克服先前算法的弱点。提出的方法包括:重新排序自适应有向无环图(RADAG),强分类器(SE),弱分类器(WE)和基于投票的候选过滤(VCF)。实验结果表明,与所有传统方法相比,我们的方法具有更高的准确性。尤其是,与准确度和分类速度均被认为是最新算法的Max Wins相比,WE提供了显着优越的结果,平均速度提高了两倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号